Target Dust Treatment for Insect Control PCT Holdings Pty Ltd Chemwatch Hazard Alert Code: 2 Issue Date: **17/05/2021** Print Date: **18/05/2021** S.GHS.AUS.EN Chemwatch: **88-0503** Version No: **2.1.5.1** Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements # SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | | | |-------------------------------|--|--| | Product name | Target Dust Treatment for Insect Control | | | Chemical Name | Not Applicable | | | Synonyms | APVMA Code: 46589 | | | Proper shipping name | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains permethrin) | | | Chemical formula | Not Applicable | | | Other means of identification | Not Available | | #### Relevant identified uses of the substance or mixture and uses advised against | Polyvant identified uses | A ready-to-use insecticidal dusting powder. | |--------------------------|---| | Relevant identified uses | Use according to manufacturer's directions. | # Details of the supplier of the safety data sheet | | - | |-------------------------|--| | Registered company name | PCT Holdings Pty Ltd | | Address | 1/74 Murdoch Circuit Acacia Ridge QLD 4110 Australia | | Telephone | 1800 630 877 | | Fax | Not Available | | Website | Not Available | | Email | Not Available | # Emergency telephone number | Association / Organisation | Poison Information centre | |-----------------------------------|---------------------------| | Emergency telephone numbers | 13 1126 | | Other emergency telephone numbers | Not Available | # **SECTION 2 Hazards identification** # Classification of the substance or mixture | Poisons Schedule | Not Applicable | | |--------------------|---|--| | Classification [1] | Skin Sensitizer Category 1, Acute Aquatic Hazard Category 1, Chronic Aquatic Hazard Category 1 | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | # Label elements Hazard pictogram(s) Signal word W Warning # Hazard statement(s) | H317 | May cause an allergic skin reaction. | | |------|---|--| | H410 | Very toxic to aquatic life with long lasting effects. | | # Precautionary statement(s) Prevention | Wear protective gloves/protective clothing/eye protection/face protection/hearing protection. | | | |---|--|--| | Avoid breathing dust/fumes. | | | | Avoid release to the environment. | | | | Contaminated work clothing should not be allowed out of the workplace. | | | | | | | Chemwatch: 88-0503 Page 2 of 11 Issue Date: 17/05/2021 Version No: 2.1.5.1 # **Target Dust Treatment for Insect Control** Print Date: 18/05/2021 #### Precautionary statement(s) Response | P302+P352 | IF ON SKIN: Wash with plenty of water and soap. | | |-----------|--|--| | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | | P391 | Collect spillage. | | #### Precautionary statement(s) Storage Not Applicable #### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures ### **Mixtures** | CAS No | %[weight] | Name | | | | |---------------|---|--|--|--|--| | 52645-53-1 | 1 | permethrin | | | | | Not Available | | (10g/kg) | | | | | Not Available | >90 | Ingredients determined not to be hazardous | | | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | | | | # **SECTION 4 First aid measures** # Description of first aid measures | • | | |--------------|--| | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | ### Indication of any immediate medical attention and special treatment needed For chronic or short term repeated exposures to pyrethrum and synthetic pyrethroids: - Mammalian toxicity of pyrethrum and synthetic pyrethroids is low, in part because of poor bioavailability and a large first pass extraction by the liver. - ▶ The most common adverse reaction results from the potent sensitising effects of pyrethrins. - Clinical manifestations of exposure include contact dermatitis (erythema, vesiculation, bullae); anaphylactoid reactions (pallor, tachycardia, diaphoresis) and asthma. [Ellenhorn Barceloux1 - In cases of skin contact, it has been reported that topical application of Vitamin E Acetate (alpha-tocopherol acetate) has been found to have high therapeutic value, eliminating almost all skin pain associated with exposure to synthetic pyrethroids. [Incitec] # **SECTION 5 Firefighting measures** # **Extinguishing media** - Water spray or fog. - ► Foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. # Special hazards arising from the substrate or mixture Fire Incompatibility None known. Chemwatch: 88-0503 Issue Date: 17/05/2021 Page 3 of 11 Print Date: 18/05/2021 Version No: 2.1.5.1 # **Target Dust Treatment for Insect Control** Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. ▶ Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. Fire Fighting ▶ DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. ▶ Equipment should be thoroughly decontaminated after use. Non combustible. Fire/Explosion Hazard Not considered a significant fire risk, however containers may burn. HAZCHEM 2Z # **SECTION 6 Accidental release measures** # Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Methods and material for Conta | innient and dealing up | |--------------------------------|---| | Minor Spills | Remove all ignition sources. Clean up all spills immediately.
Avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Use dry clean up procedures and avoid generating dust. Place in a suitable, labelled container for waste disposal. Environmental hazard - contain spillage. | | Major Spills | Environmental hazard - contain spillage. Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. FDRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency Services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** #### Precautions for safe handling ▶ Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. Safe handling When handling, DO NOT eat, drink or smoke Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. ► Store in original containers. Keep containers securely sealed. Store in a cool, dry area protected from environmental extremes. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. Other information For major quantities: Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities ### Conditions for safe storage, including any incompatibilities #### Polyethylene or polypropylene container. Suitable container Check all containers are clearly labelled and free from leaks. Pyrethrins and permethrins: are unstable in the presence of light, heat, moisture and air Storage incompatibility are hydrolysed by oxygen and/ or sunlight may react with strong oxidisers to produce fire and explosions Chemwatch: 88-0503 Version No: 2.1.5.1 # Page 4 of 11 **Target Dust Treatment for Insect Control** Issue Date: 17/05/2021 Print Date: 18/05/2021 are incompatible with alkalis #### SECTION 8 Exposure controls / personal protection #### Control parameters Occupational Exposure Limits (OEL) **INGREDIENT DATA** Not Available #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | | TEEL-3 | |--|---------------|---------------|---------------|---------------| | Target Dust Treatment for Insect Control | Not Available | Not Available | | Not Available | | Ingredient | Original IDLH | | Revised IDLH | | | permethrin | Not Available | | Not Available | | #### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |------------|---|---| | permethrin | E | ≤ 0.01 mg/m³ | | Notes: | Occupational exposure banding is a process of assigning chemicals into s
adverse health outcomes associated with exposure. The output of this pro
range of exposure concentrations that are expected to protect worker heal | cess is an occupational exposure band (OEB), which corresponds to a | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion) | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Personal protection - Safety glasses with side shields. - Chemical goggles. #### Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Eve and face protection Chemwatch: 88-0503 Page 5 of 11 Issue Date: 17/05/2021 Version No: 2.1.5.1 Print Date: 18/05/2021 # **Target Dust Treatment for Insect Control** Skin protection See Hand protection below NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact ► Contaminated leather items,
such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact, chemical resistance of glove material, glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: Hands/feet protection Excellent when breakthrough time > 480 min Good when breakthrough time > 20 min Fair when breakthrough time < 20 min Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. polychloroprene. - nitrile rubber. - butyl rubber. - fluorocaoutchouc - polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. # **Body protection** # See Other protection below #### Other protection - Overalls. P.V.C apron. - Barrier cream. - Skin cleansing cream. - Eye wash unit. # Respiratory protection Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1 | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | * - Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - ▶ Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. Chemwatch: **88-0503** Page **6** of **11** Version No: 2.1.5.1 Target Dust Treatment for Insect Control Issue Date: **17/05/2021**Print Date: **18/05/2021** Class P2 particulate filters are used for protection against mechanically and thermally generated particulates or both. P2 is a respiratory filter rating under various international standards, Filters at least 94% of airborne particles Suitable for: - $\boldsymbol{\cdot} \quad \text{Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.}$ - \cdot $\;$ Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke. - Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS # **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | White odourless powder; not miscible with water. | | | |--|--|---|----------------| | Physical state | Divided Solid Relative density (Water = 1) Not Available | | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** # Information on toxicological effects | Information on toxicological effects | | | | |--------------------------------------
---|--|--| | Inhaled | Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Inhalation of pyrethrins may produce nausea, vomiting, sneezing, serious discharge from the nose, blocked nose and asthma. High concentrations may produce excessive excitement, inco-ordination, tremors, muscle paralysis and death (due to failure of breathing). Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. This material, like natural pyrethrins, may cause central stimulation with nausea, vomiting, stomach upset, diarrhoea, hypersensitivity, inco-ordination, tremors, muscle paralysis, convulsion, coma and respiratory failure. There may be aggressive behaviour, tremor and weakness. | | | | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. Ingestion of pyrethrins may produce nausea, vomiting, headache, muscle tremors, shock and perhaps death. Its fatal human dose is estimated at 100 grams per 70 kg man (1430 mg/kg). | | | | Skin Contact | Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Skin contact with natural pyrethrins may cause severe inflammation, hayfever and asthma. If they are absorbed through the skin, the same toxic effects as inhalation can occur; the liver and kidney may be damaged. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | | | Eye | Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. | | | | Chronic | Inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Chronic poisoning by natural pyrethrins may result in convulsion, paralysis with extreme muscle tone, rapid and uneven heart beat, liver and | | | Chemwatch: 88-0503 Page 7 of 11 Version No: 2.1.5.1 **Target Dust Treatment for Insect Control** Issue Date: 17/05/2021 Print Date: 18/05/2021 kidney damage, or death. Natural pyrethrins may cause hypersensitivity especially if past exposure has occurred. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis, caused by particles less than 0.5 micron penetrating and remaining in the lung. | Target Dust Treatment for
Insect Control | TOXICITY Not Available | IRRITATION Not Available | |---|---|---| | permethrin | TOXICITY dermal (rat) LD50: 1750 mg/kg ^[2] Oral(Rat) LD50; 383 mg/kg ^[2] | IRRITATION Skin (rabbit): 500 mg/24h - mild | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. [* The Pesticides Manual, Incorporating The Agrochemicals Handbook, 10th Edition, Editor Clive Tomlin, 1994, British Crop Protection Council] Oral (rat) LD50: 430-4000 mg/kg * Oral (mouse) LD50: 540-2960 mg/kg * cis/trans ratio: 40:60 cis/trans ratio: 20:80 ADI: 0.05 mg/kg for nominal cis-trans 40:60 and 25:75 isomers only | Acute Toxicity | × | Carcinogenicity | X | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | X | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | ~ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: — Data either not available or does not fill the criteria for classification - Data available to make classification # **SECTION 12 Ecological information** PERMETHRIN | | Endpoint | Test Duration (hr) | Species | Value Sou | ource | |---|------------------|--|---|--|---------------| | Target Dust Treatment for
Insect Control | Not
Available | Not Available | Not Available | Not Not
Available Ava | ot
vailabl | | permethrin | Endpoint | Test Duration (hr) | Species | Value Sc | Sourc | | | EC50(ECx) | 48h | Crustacea | <0.001mg/L 4 | ļ | | | EC50 | 48h | Crustacea | <0.001mg/L 4 | ļ | | | LC50 | 96h | Fish | <0.001mg/L 4 | ļ | | Legend: | Extracted from | 1. IUCLID Toxicity Data 2. Europe ECHA | A Registered Substances - Ecotoxicological I | Information - Aquatic Toxicity 3. EPIWII | /IN S | | | ' ' | | S EPA, Ecotox database - Aquatic Toxicity Da
(Japan) - Rioconcentration Data 8, Vendor D | • | ssme | Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing Wastes resulting from use of the product must be disposed of on site or at approved waste sites. For synthetic pyrethroids: Environmental Fate: Synthetic pyrethroids are examples of optimised insecticidal activity, selectivity and tailored environmental persistence. Through modifications of both acid and alcohol portions of the ester, compounds of desired residual activity have been synthesised whilst maintaining a biodegradable ester linkage. While these compounds are generally very toxic to crustaceans and fish in laboratory bio assays, under field conditions, the residues are tightly bound in sediment, and ingested residues are readily metabolised, resulting in their toxicity in natural systems generally being less than laboratory test data might indicate. They are generally non-persistent in the environment, as pyrethroid concentrations decrease rapidly due to sorption to sediment, suspended particles and plants. Microbial and photodegradation also occur. Pyrethrins are generally unstable in the presence of light, are hydrolysed rapidly under alkaline conditions and oxidise rapidly in air. Vapour phase pyrethrins may combine chemically with ozone to produce hydroxy radicals. Pyrethroids that are more stable to sunlight include permethrin, deltamethrin, cyhalothrin, cyfluthrin, and cypermethrin and are thus more frequently applied outdoors to crops in comparison to
the rapidly degraded pyrethroids like resmethrin and allethrin. Because agricultural dose rates are low and biological degradation is generally rapid, residues are unlikely to attain significant levels. Permethrin disappears from ponds and streams within 6-24 hours, pond sediments within 7 days and foliage and forest soil within 58 days. Pyrethrins and pyrethroids are degraded by light both in the atmosphere and sunlit surface waters. The rate of photolysis in water is increased when fulvic and humic acids are present. Pyrethroids and pyrethrins also undergo hydrolysis in the environment at varying rates depending upon pH and temperature. Generally, hydrolysis is only an important environmental fate process under alkaline conditions and at temperatures of 20 deg. C or greater. Pyrethrins and pyrethroids are expected to exist in both vapour and particulate phases in the ambient atmosphere. Vapor phase pyrethrins and pyrethroids are rapidly degraded in the atmosphere by direct photolysis and reaction with oxidants found in air such as photochemically-produced hydroxyl radicals, ozone, and nitrate radicals. Particulate phase compounds are slower to degrade and can travel long distances before being removed from the air by wet and dry deposition. Pyrethrins and pyrethroids adhere strongly to soil surfaces and are not very mobile so leaching potential is low. Photolysis is only an important environmental fate at the surface of the soil as light cannot penetrate to deeper layers of the soil. The Chemwatch: 88-0503 Page 8 of 11 Version No: 2.1.5.1 #### **Target Dust Treatment for Insect Control** potential for significant toxicity is not reached in field conditions. Under aerobic conditions in soil, permethrin degrades in a relatively short time (half-life 28 days). Volatilisation from water and soil is expected to occur slowly for many of the pyrethroids. When released to water, partitioning to suspended solids and sediment occurs rapidly. These compounds adsorb strongly to suspended solids and sediment in the water column, and this process significantly reduces the potential for volatilisation. Volatilisation losses from foliage may be considerably greater than volatilisation from soils because pyrethrins and pyrethroids do not adsorb as strongly to the leafy component of vegetation as to soils. Pyrethrins and pyrethroids are often used indoors in sprays or aerosol bombs, and the volatilisation rates from glass or floor surfaces may be significantly faster than from soils since these Little data exist regarding the uptake and transport of pyrethrins and pyrethroids by plant material. Since many of these compounds are rapidly degraded in the environment, this transport mechanism may not be an important environmental fate process other than the initial settling of these compounds on the canopy following deposition. The aerial surface of a plant, including foliage, is covered by a cuticle, which serves as a barrier to water loss and to prevent penetration of applied chemicals or environmental pollutants. Once deposited on the surface, a chemical may be degraded, bind to the cuticle, or diffuse into the plant through the stomata. Since pyrethrins and pyrethroids adsorb strongly to soils, their uptake from roots and transport within plants is expected to be limited. Humans are exposed to pyrethrins and pyrethroids primarily from food sources, especially fruits and vegetables. The tendency of young children to ingest soil, either intentionally or unintentionally can result in ingestion of pyrethrins and pyrethroids present in soil and dust. Since these compounds are adsorbed strongly to soils, they may not be in a highly bioavailable form. Young children often play on the ground or on carpets and this will increase the likelihood of skin exposure and inhalation of contaminated particles from soil, household dust and treated surfaces. Drinking Water Standards: pesticide 0.1 ug/l (UK max.) Ecotoxicity: Synthetic pyrethroids are extremely effective against insects, but are relatively safe to mammals and birds. Pyrethroids are extreme toxic to aquatic organisms, where often <1 ug/L will produce toxic effects. The half-lives for elimination of several pyrethroids by trout are all greater than 48 hours, while elimination half-lives in birds and mammals range from 6 to 12 hours. Pyrethroids are highly toxic to fish; with 96-hour LC50 values generally below 10 ug/l. Corresponding LD50 values in mammals and birds are in the range of several hundred to several thousand mg/kg. Fish sensitivity to the pyrethroids may be explained by their relatively slow metabolism and elimination of these compounds. The half-lives for elimination of several pyrethroids by trout are all greater than 48 hours, while elimination half-lives for birds and mammals range from 6 to 12 hours. Generally, the lethality of pyrethroids to fish increases with increasing octanol/water partition coefficients. The bioaccumulation factor of cypermethrin in fish is approximately 1000 when measured experimentally. Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered. personal care products) houseplants containing linseed oil waxes, air fresheners compounds are not likely to adsorb as strongly to these surfaces. oxidation products Soft woods, wood flooring, including Isoprene, limonene, alpha-pinene, other terpenes and cypress, cedar and silver fir boards, sesquiterpenes 4-Phenylcyclohexene, 4-vinylcyclohexene, styrene, Carpets and carpet backing 2-ethylhexyl acrylate, unsaturated fatty acids and esters Linoleum and paints/polishes Linoleic acid, linolenic acid Residual monomers Isoprene, terpenes Source of unsaturated substances Unsaturated substances (Reactive Emissions) Latex paint Certain cleaning products, polishes, Limonene, alpha-pinene, terpinolene, alpha-terpineol, and other sesquiterpenes Natural rubber adhesive Photocopier toner, printed paper, styrene polymers Environmental tobacco smoke Styrene, acrolein, nicotine Squalene, unsaturated sterols, oleic acid and other Soiled clothing, fabrics, bedding saturated fatty acids Styrene Unsaturated fatty acids from plant waxes, leaf litter, and Soiled particle filters other vegetative debris; soot; diesel particles Unsaturated fatty acids and esters, unsaturated oils, Ventilation ducts and duct liners neoprene "Urban grime' Polycyclic aromatic hydrocarbons Perfumes, colognes, essential oils Limonene, alpha-pinene, linalool, linalyl acetate, (e.g. lavender, eucalyptus, tea tree) terpinene-4-ol, gamma-terpinene Overall home emissions Limonene, alpha-pinene, styrene Major Stable Products produced following reaction with ozone Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHQ, geranyl acetone, Occupants (exhaled breath, ski oils, oleic acid and other unsaturated fatty acids, unsaturated 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid. > Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, methacrolein, methyl vinyl ketone, SOAs including ultrafine particles Issue Date: 17/05/2021 Print Date: 18/05/2021 Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid Formaldehyde Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and linalool, linalyl acetate and other terpenoids, longifolene organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyldihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultrafine particles Formaldehyde, methacrolein, methyl vinyl ketone Formaldehyde, benzaldehyde Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinaldehyde, cotinine Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxononanoic acid, azelaic acid, nonanoic acid Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; 9-oxononanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH, and -COOH) C5 to C10 aldehydes Oxidized polycyclic aromatic hydrocarbons Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro- 5-methyl-2(3H) furanone, SOAs including ultrafine particles Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid, benzaldehyde, SOAs including ultrafine particles Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols Reference: Charles J Weschler; Environmental Helath Perspectives, Vol 114, October 2006 DO NOT discharge into sewer or waterways # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|-------------------------|------------------| | permethrin | HIGH | HIGH | # Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|-----------------------| | permethrin | LOW (LogKOW = 7.4267) | # Mobility in soil | Ingredient | Mobility | |------------|--------------------| | permethrin | LOW (KOC = 178400) | ## **SECTION 13 Disposal considerations** ### Waste treatment methods - Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible Otherwise #### Product / Packaging disposal If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Chemwatch: 88-0503 Page 9 of 11 Issue Date: 17/05/2021 Version No: 2.1.5.1 # **Target Dust Treatment for Insect Control** Print Date:
18/05/2021 ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - ► Reuse - ► Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Management Authority for disposal. - Bury residue in an authorised landfill. - Recycle containers if possible, or dispose of in an authorised landfill. # **SECTION 14 Transport information** #### Labels Required # **Marine Pollutant** **HAZCHEM** 2Z #### Land transport (ADG) | -uuopo(o) | | | | |------------------------------|---|--|--| | UN number | 3077 | | | | UN proper shipping name | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains permethrin) | | | | Transport hazard class(es) | Class 9 Subrisk Not Applicable | | | | Packing group | | | | | Environmental hazard | Environmentally hazardous | | | | Special precautions for user | Special provisions 274 331 335 375 AU01 Limited quantity 5 kg | | | Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082 are not subject to this Code when transported by road or rail in; - (a) packagings; - (b) IBCs; or - (c) any other receptacle not exceeding 500 kg(L). - Australian Special Provisions (SP AU01) ADG Code 7th Ed. # Air transport (ICAO-IATA / DGR) | UN number | 3077 | | | | |------------------------------|---|------------------------------------|--|--| | UN proper shipping name | Environmentally hazardous substance, solid, n.o.s. * (contains permethrin) | | | | | Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subrisk ERG Code | ICAO / IATA Subrisk Not Applicable | | | | Packing group | III | | | | | Environmental hazard | Environmentally hazardous | | | | | Special precautions for user | Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack | | A97 A158 A179 A197 A215 956 400 kg 956 400 kg Y956 30 kg G | | Version No: **2.1.5.1** # **Target Dust Treatment for Insect Control** Issue Date: **17/05/2021**Print Date: **18/05/2021** #### Sea transport (IMDG-Code / GGVSee) | UN number | 3077 | | | |------------------------------|--|--|--| | UN proper shipping name | ENVIRONMENTALL | Y HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains permethrin) | | | Transport hazard class(es) | IMDG Class 9 IMDG Subrisk Not Applicable | | | | Packing group | III | | | | Environmental hazard | Marine Pollutant | | | | Special precautions for user | EMS Number Special provisions Limited Quantities | | | # Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------|---------------| | permethrin | Not Available | # Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |--------------|---------------| | permethrin | Not Available | # **SECTION 15 Regulatory information** # Safety, health and environmental regulations / legislation specific for the substance or mixture # permethrin is found on the following regulatory lists Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 $\,$ Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\boldsymbol{6}$ Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs # National Inventory Status | National Inventory | Status | |--|---| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | No (permethrin) | | Canada - NDSL | No (permethrin) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | No (permethrin) | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | # **SECTION 16 Other information** | Revision Date | 17/05/2021 | |---------------|------------| | Initial Date | 17/05/2021 | # **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|-------------------| | 0.0.2.1 | 27/04/2021 | Regulation Change | | 0.0.3.1 | 04/05/2021 | Regulation Change | | 0.0.4.1 | 07/05/2021 | Regulation Change | Chemwatch: 88-0503 Page 11 of 11 Issue Date: 17/05/2021 Version No: 2.1.5.1 Print Date: 18/05/2021 ### **Target Dust Treatment for Insect Control** | Version | Date of Update | Sections Updated | |---------|----------------|-------------------| | 0.0.5.1 | 11/05/2021 | Regulation Change | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances # This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.